Material thickness optimization for transmission-mode terahertz time-domain spectroscopy.

نویسندگان

  • Withawat Withayachumnankul
  • Bernd M Fischer
  • Derek Abbott
چکیده

The thickness of a sample material for a transmission-mode terahertz time-domain spectroscopy (THz-TDS) measurement is the subject of interest in this paper. A sample that is too thick or too thin can raise the problem of measurement uncertainty. Although greater thickness allows the terahertz radiation--or T-rays--to interact more with bulk material, the SNR rolls off with thickness due to signal attenuation. A sample that is too thin renders itself nearly invisible to T-rays, in such a way that the system can hardly sense the difference between the sample and a free space path. The optimal trade-off is analyzed and revealed in this paper, where our approach is to find the optimal thickness that results in the minimal uncertainty of measured optical constants. The derived model for optimal thickness is supported by the results from experiments performed with polyvinyl chloride (PVC), high-density polyethylene (HDPE), and lactose samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness.

We study surface-plasmon-enhanced terahertz transmission through subwavelength metallic hole arrays of sub-skin-depth thickness. Dynamic evolution of surface-plasmon resonance in terms of array thickness is characterized by use of terahertz time-domain spectroscopy in the frequency range 0.1-4.5 THz. A critical thickness of lead array film is observed, above which surface-plasmon coupling of te...

متن کامل

Material parameter estimation with terahertz time-domain spectroscopy.

Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel m...

متن کامل

Terahertz study of 1,3,5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy

This letter describes the use of THz time-domain spectroscopy (TDS) applied in transmission to the secondary explosive 1,3,5 trinitro-s-triazine. Samples were also subjected to Fourier transform infrared spectroscopy over the same range for comparison. A detailed spectroscopy study is presented. General agreement between results from both methods confirms the absorption features found. A compar...

متن کامل

Terahertz Time-Domain Spectroscopy of Metallic Particle Ensembles

The terahertz (THz) frequency range is the region of the electromagnetic spectrum between the microwave and optical bands spanning from 0.1 THz to 10 THz. Historically, electromagnetic radiation in this frequency range has been inaccessible due to the lack of widespread electronic or laser-based radiation sources. Electronic radiation sources such as crystal oscillators are generally confined t...

متن کامل

Simultaneous composition and thickness measurement of paper using terahertz time-domain spectroscopy.

We present a noncontact method for quantitative composition and thickness monitoring of flat sheet products using terahertz time-domain spectroscopy. We apply the method to obtain simultaneous measurement of thickness and moisture content of paper sheets. The paper is modeled as an effective medium of water mixed with fibers, and model parameters are estimated from fits to the measured transmis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2008